Package: conquer 1.3.3

conquer: Convolution-Type Smoothed Quantile Regression

Estimation and inference for conditional linear quantile regression models using a convolution smoothed approach. In the low-dimensional setting, efficient gradient-based methods are employed for fitting both a single model and a regression process over a quantile range. Normal-based and (multiplier) bootstrap confidence intervals for all slope coefficients are constructed. In high dimensions, the conquer method is complemented with flexible types of penalties (Lasso, elastic-net, group lasso, sparse group lasso, scad and mcp) to deal with complex low-dimensional structures.

Authors:Xuming He [aut], Xiaoou Pan [aut, cre], Kean Ming Tan [aut], Wen-Xin Zhou [aut]

conquer_1.3.3.tar.gz
conquer_1.3.3.zip(r-4.5)conquer_1.3.3.zip(r-4.4)conquer_1.3.3.zip(r-4.3)
conquer_1.3.3.tgz(r-4.4-x86_64)conquer_1.3.3.tgz(r-4.4-arm64)conquer_1.3.3.tgz(r-4.3-x86_64)conquer_1.3.3.tgz(r-4.3-arm64)
conquer_1.3.3.tar.gz(r-4.5-noble)conquer_1.3.3.tar.gz(r-4.4-noble)
conquer_1.3.3.tgz(r-4.4-emscripten)conquer_1.3.3.tgz(r-4.3-emscripten)
conquer.pdf |conquer.html
conquer/json (API)

# Install 'conquer' in R:
install.packages('conquer', repos = c('https://xiaooupan.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/xiaooupan/conquer/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

6.11 score 19 stars 5 packages 17 scripts 5.3k downloads 4 exports 5 dependencies

Last updated 2 years agofrom:3adb73cfa7. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-win-x86_64OKOct 26 2024
R-4.5-linux-x86_64OKOct 26 2024
R-4.4-win-x86_64OKOct 26 2024
R-4.4-mac-x86_64OKOct 26 2024
R-4.4-mac-aarch64OKOct 26 2024
R-4.3-win-x86_64OKOct 26 2024
R-4.3-mac-x86_64OKOct 26 2024
R-4.3-mac-aarch64OKOct 26 2024

Exports:conquerconquer.cv.regconquer.processconquer.reg

Dependencies:latticeMatrixmatrixStatsRcppRcppArmadillo